Khulna University Studies

ORIGINAL ARTICLE _,
'\\\~¥—’/‘
Copyright ©Khulna University

An Intelligent Edge Processing Framework using Situation
Calculus for IoT based Smart City

SK Alamgir Hossain
Computer Science and Engineering Discipline,
Khulna University, Khulna, Bangladesh
Email: alamgir@cseku.ac.bd

Md. Anisur Rahman
Computer Science and Engineering Discipline,
Khulna University, Khulna, Bangladesh

M. Anwar Hossain

Department of Software Engineering,
CCIS, King Saud University, KSA

KUS: 21/01: 110121

Abstract

With advancements in IoT (Internet of Things), the number of applications and services
for Smart Cities have increased in recent years, ranging from public services and safety
to smart traffic and smart audio/video surveillance. As mobile and cloud computing
have advanced, a large number of IoT devices have been connected to the Internet. This
connected devices generates billions of bytes of data at the network edge. In order to
fully realize the potential of this edge data there is a strong need to extend Al’s frontiers
to the network edge. Edge computing, a new paradigm that shifts computing workloads
and services from the network core to the network edge, has been identified as a viable
approach to satisfy that need. The concept of Edge Intelligence (EI) in Smart Cities is
gaining a lot of attraction. However, EI research is still in its early stages, and research
groups would welcome a dedicated platform for communicating recent breakthroughs in
EI in Smart Cities. To this end, we introduced a new technique of intelligent edge pro-
cessing framework using Situation Calculus for IoT based Smart Cities. In this paper,
we provide an overview of our architecture, framework, and key techniques.

Khulna University Studies

Keywords: Edge Computing, Smart City, Situation Calculus, Internet of Things

1 Introduction

We are living in an incredible time of Big Information explosion. It has lately seen a
drastic transition in data source from massive cloud computing data centers to more
common end devices, such as mobile/IoT devices. Usually, huge data was created and
kept in large data centers. The trend is currently reversing, especially to the spread
of mobile computing and IoT. Cisco anticipates that by 2021, all network edge users,
devices, and objects will create over 850 ZB. In comparison, global data-center traffic
is estimated to reach just 20.6 ZB by 2021. In smart cities the edge ecosystem will
provide many new opportunities by processing huge amounts of IoT data. On the other
hand transferring data to the edge ecosystem is challenging with rest to speed, cost, and
privacy. The common assumption is that data from IoT devices should be transmitted
to cloud datacenters for analysis [25]. But, when transferring huge data through the
Internet, both cost and time may be excessively expensive, and privacy leakage may be
a severe concern [9]. An alternative but very effective approach is to process the data
through edge devices. Each device act as an Al agent that could process the data locally.
Figure 1 demonstrating the edge computing paradigm.

Data
Producer

Data

Edge e N |
~/\ ['+ Request

\ = !
|Response | :
| L) ! 1

N
.
’
s v

Motion camera Humidity =~ Temperature Mobile Social
Sensor Sensor Sensor Data Data

Data Producer / Consumer

Figure 1: Edge computing paradigm.

In general, the physical proximity of information-generation sources provides several
advantages over the traditional cloud based processing. Furthermore, the intersection
of artificial intelligence (AI) with edge computing has created a new field known as EI
(Edge Intelligence) [22]. Through EI we can easily deploy machine learning algorithms
to the edge devices. So the edge devices will be more powerful in the context of informa-
tion processing unit. So, in order to better understanding or analyzing a city’s current
situation it is a good way to deploy Al based agents in the edge devices [8]. Here in
general a situation [10] of a system refers to the current state of the system. According
to IoT paradigm a situation is a collection of conditions and events that represent the
status of the system at that moment. So situation is the overall picture of a system that
can be a useful observation or monitoring tools for the city officials. With the growth of

Khulna University Studies

cities, many events are expected to occur, and any inefficient strategy to processing and
handling such circumstances would impede prompt decision-making. Many initiatives
27, 1, 3, 15] that mix cloud and IoT technologies to overcome this difficulty.

Edge computing processes data locally and provides processed data to the server lo-
cated in the Internet. This process reduces the volume of data that must be transported
to a remote server. This technology has three key advantages: it can operate with enor-
mous amounts of data, it concentrates on location awareness and it guarantees minimal
latency. The concept of Edge Intelligence (EI) is gaining popularity in Smart Cities.
However, EI research is still in its early stages, and research groups would benefit from
having a dedicated space to share current EI in Smart Cities findings. To that end, we
have introduced a situation calculus-based intelligent edge processing system for IoT.

The remainder of this paper is organized as: we look at many significant research
publications on edge computing, situation calculus, and IoT-based smart cities in Section
2, the architecture of our proposed system is shown in Section 3, the implementation
challenges, and development roadblocks that we discovered throughout our inquiry are
discussed in Section 4. Finally, a conclusion and discussion of the paper’s future work
directions are presented in Section 5.

2 Related Work

The scientific community is familiar with the notions of edge computing and situation
calculus. There has already been a lot of study completed in this domain. In this
section we have discussed a few of their important works. Situation calculus has been
investigated before in a variety of contexts, including cognitive modeling for reacting to
[oT cyberattacks, distributed trust reasoning in cyber-physical-social smart systems, and
logic-based emergency response systems. Levesque et. al. [16] was the first to coin the
word. Although Levesque added several extensions to his initial concept, the coupling
of Situation calculus and Edge computing or IoT remained absent. Researchers have
recently taken this into account and published numerous papers in this area. Huang et
al. [14] created one of the promising efforts among them. Trust is a significant issue, in
cyber physical smart systems and their design. There are a variety of trust mechanisms
available. Using one’s web of trust is a popular way to make trust assessments about
unknown entities. Computational trust models based on networks usually presume global
knowledge of the network’s trust relationships. This notion is faulty since each person
only understands his or her own trust relationships.

Chouhan et al. [7] present a situation calculus based technique that could detect
cyber attacks automatically. They construct a real world IoT situation to illustrate the
usefulness of the technique for modeling and responding to threats. In an IoT-based
smart environment, emergency response solutions are required. Mainak et. al. [4] was
the first to use situation calculus to create formal logic-based emergency response systems.
The study uses Situation Calculus to formalize and verify emergency response actions.
Despite the fact that situation calculus is gaining popularity in a variety of smart fields,
abstraction in situation calculus action theories was lacking prior to the study [5]. The
situation calculus was used to construct a generic framework for agent abstraction in
this paper. They presume that each agent has two types of specification: high level
and low level. They characterize sound abstraction between such action theories as the
existence of an appropriate dissimulation between their respective models. Instead of
processing all data in a centralized server, data might be processed at the network’s

Khulna University Studies

edge. Researchers recently presented many loT data processing approaches based on this
economical methodology. Among these, a fog computing-based IoT infrastructure was
presented in [6]. The authors distinguished two types of deployment: (1) collaborative
and (2) integrated. Roman et.al. [23] published another article in which the authors used
cellular network (because of availability data source in 1oT) as an edge node to analyze
data. All those papers mainly focus on edge computing or situation calculus separately,
but no work is available that focuses on situation calculus in edge computing.

Other academics [17, 12] have also focused on improving mobile phones based IoT
data processing paradigm. Mobile data is transmitted to fog servers, which they filter or
process before transferring it to cloud servers in these works. In their work, Lv et al. [18]
established a way to conduct calculations cooperatively to reduce the large computational
demand. First and foremost, the strategy must address how to induce selfish gadgets to
collaborate. Second, the approach addresses the issue of how to carry out collaborative
computing when the device is willing to participate. e.g. how may computations be per-
formed when machine learning jobs need extensibility and privacy? A moving edge server
is chosen as the principal unit due to the aforementioned issues. After that the resources
exists around the edge server are used to improve the computing performance. The prob-
lem is solved using the alternate direction multiplier method (ADMM). According to the
findings of the study, an intelligent edge processing framework is required for IoT-based
smart city development. So, inspired by [17, 28, 24, 2], we developed an intelligent edge
processing framework for IoT-based smart cities that uses situation calculus to overcome
the drawbacks of the systems outlined above.

3 Proposed Framework

This section contains our recommended solution of edge processing framework and their
working process. In section 3.1 we present the data offloading mechanism. In section
3.2 we present the basic of situation calculus. Then in section 3.3 we present how the
situation is represented in IoT. Finally in section 3.4 we present our intelligent edge
processing framework in details.

3.1 Data Offloading

There are two types of data sending mechanism (familiar with the term offloading) from
edge layer to cloud layer: vertical and horizontal offloading (see Figure 2). Horizontal
offloading refers to the ability of the edge to transfer tasks to neighboring edges. Whereas
vertical offloading refers to the ability of the edge to offload duties to the cloud. Which
method is best depends on the system. If the system needs some pre-processing in the
edge layer then horizontal offloading is better than vertical offloading as in the vertical
offloading there is no central control for sending data to the cloud.

3.2 Situation Calculus

The situation calculus is a logic language that is used to represent and reason about
dynamical environments. John McCarthy [16] was the first to introduce it in 1963.
Situations, actions and fluents are the fundamental ideas in the situation calculus. In a
nutshell, as agents take activities, the dynamic environment changes from one condition to
the next. The activity result is described by fluents which is a situation-specific functions.
Fluents are classified into two types: i) relational (can only accept two values: true or

Khulna University Studies

Data

Figure 2: Off-loading patterns in IoT systems, (a) vertical and (b) horizontal.

false) and ii) functional (can accept an unlimited number of values) fluents. For example,
handempty is a relational fluent that is true when the robot’s hand is empty. Battery-
level is a functional fluent with a value of an integer between 0 and 100 that indicates how
much backup is remaining of a computer. For any calculation with the help of situation
calculus it is the first step to identify all the actions available for the system and after
that identify all the fluents to represent the actions. Consider the typical blocks universe,
in which a set of equal-sized blocks can be arranged on a table to form towers. The
capabilities of an imaginary agent define the collection of actions in this area. Consider
that the agent is a one handed robot [19] and can grasp any block from the top of a tower
and can either place it to another tower top place or can place it on the table to create

Cloud Server

Network Devices

A

Edge Devices \ /

Do

(a)

Feedback

Cloud Server

""""@"Nétwo}ﬁ'

Devices

@Edge
Devices

e’

oSk,

O

(b)

a new tower. Few actions of this robot can be represented as follows:

e stack(zr, y): If x and y is clear then place x on top of y.

e unstack(z, y): If the robot & x is free and x is on top of y then pick up block x

from block y;

e putdown(z): If robot is not empty and holding x in his hand, place block x on the

table.

e pickup(z): Pickup x from the table if the robot’s hand id free.

The following relational fluents can be used to explain the results of these actions:

e handempty: Return true in the case of robot’s hand is free.

e holding(z): Return true if the robot’s hand is holding block x;

e on(z, y): Return true if block x is on block y;

e ontable(z): Return true if block x is on the table;

Khulna University Studies

o clear(z): Return true if block x is clear and no one is on top of this block.

So, clear(y) and holding(z) should be true for action stack(z, y). Also handempty and
on(z, y) will be true after the execution of stack(z, y). But clear(y) and holding(z) will
not be true after the execution of stack(z, y).

3.3 Situation Generation

In this section, we will explain how to use the situation calculus logic language in our pro-
posed system. The fundamental goal of our proposed technique is to identify the present
condition of a smart city, which represents the status of healthcare, transportation, secu-
rity, and other elements. Efficient situation awareness enables city authorities to deliver
services to residents and take appropriate decisions. In general, a situation is a collection
of facts about an environment through time. The classical situation calculus can be used
to model the circumstance. A situation, according to situation calculus, is a series of
events that begins with a specific situation called initial situation Sy. Sy denotes the be-
ginning situation that develops throughout time. According to situation calculus when an
action dj is initiated, a new situation is formed from the first situation Sy. If any action is
triggered or surpasses a particular threshold value, 7', the following circumstance will be
formed. Preconditions may exist for some activities. Suppose we say, “If the place is free,
open the camera.” This job may be stated as Poss(open(v),s) <> is_free(v,s), where
Poss is a specific function for doing actions. Or “If garbage box is 80% full then send
alert message.” This job may be stated as Poss(send_message(v), s) <> is_full(v, s, 80).
Or more complex statement “If there is any traffic on the road at night, turn on the street
lights.”, Poss(send-message(v),s) <> is_traf fic(v,s,roadl) A is_-day(v,s). In this way
we can list the set of actions and statement as a mathematical formulation and finally
can generate a result with the help of situation calculus. Here in our proposed method
the situation is generated through Algorithm 1.

3.4 Intelligent Edge Processing

In order to get the full potential of [oT, it is necessary to process data intelligently
in the edge layer. Edge based processing is economical, faster, and easily integratable.
The proposed solution is depicted in Figure 3. It offers services for collecting sensor
data, extracting and integrating information, processing it locally, and then pushing it
to the cloud. Thus, structured (e.g. sensor data)/semi-structured (e.g. inspection re-
ports) /unstructured (e.g. photos) data must be evaluated by pushing or pulling data to
or from the edge servers. The intelligent edge connects and manages field equipment to
increase availability and support. It can be installed on a computer or a gateway, depend-
ing on the complexity and resource consumption of the services to be used. According
to Figure 3, components are grouped in layers, beginning with data sources at the bot-
tom and progressing to communication services at the top. Intelligent edge processing is
divided into the following layers:

3.4.1 Plug & Play Management

This layer offers plug-and-play connectivity on demand. New sensors may be simply
added, and some can even be deactivated depending on the application. Generally, in
[oT plug & play means any [oT device can be easily connectable with an existing system.
This does not mean that there should not be any authentication. A device will be

Khulna University Studies

Algorithm 1: Situation generation

/* Constructs a situation based on the data received from IoT
devices. */

while true do

m¢ < fetchSensorData(m, K); /* K is the authentication key to
access the sensor */

e* < partitionStream(m®);

/* Consider the server will process the task in First In First
Out (FIFO) pattern x/

assignToEdgeServer(e*, FIFO);

while data available in edge server do

/* Send the edge server data after unified representation */

n = AggregateCloudDatal();

initialize(last sipuation);

if lastgituation = null then

last sipuation < convertTolnitialSituation(n[0]); /* render the
lastsituation to display devices */
| continue
foreach D € n do
/* D is the data set in 2d array format */
if (value(D) > Threshold, T;) then
/* means there is a change x/
last sipuation ¢ convertToSituation(D, lastsijuation) /* Tender the
lastsityation to display devices */

Algorithm 2: convertToSituation(D, lastsituation)

/* This algorithm generates a situation based on the input data and
last situation. */

Input: Data set: D and lasts;iuation

Output: A new situation

/* Relational Actions and Fluents x/

f1 < traf fic(D, MAX);

fa + empty_parking_lots(D);

f3 + sunny_areas(D);

fi <= pollution_areas(D, LOW EST); /* need to update with domain
specific fluents */

last situation < calculate(fy, fo, ..., [i)

return lastgituation;

Khulna University Studies

Cloud Processing Model,

control etc.
Edge
Processing Intelligent Processing Services
{ Situation Calculus
AR]
HHE |
[} -
T “
é Smart Aggregation
o r
€ &
g Knowledge Extraction
n N
Plug & Play Management

4 »

1 F
Motion camera Humidity =~ Temperature mobijle Social
Sensor Sensor Sensor Data Data

Things/Machine/Process/People

Figure 3: Intelligent Edge Processing.

connected with an existing infrastructure if it is able to complete proper authentication.
Plug & Play features reduce user involvement or changes to the remaining system’s design
or implementation.

3.4.2 Knowledge Extraction

This layer facilitates intelligent multimodal sensing. Conventional data analytics uses
structured data. Structured data is well formatted and easy to apply any algorithm, but
in the case of semi-structured or unstructured data (e.g. text, photos, videos, and so on),
it is more difficult. For semi-structured or unstructured data analysis, prior preparation
is necessary to get it in the correct format. In general, it is not a good idea to send all
raw data to the server, instead of this a set of information extraction methodologies can
be applied to convert the data to a well-defined format. Here in our proposed method we
used the knowledge extraction work [13].

3.4.8 Smart Aggregation

As in an IoT environment high volume of data from different sensors are coming into a
common gateway so in-order to process the data on time it is important to use smart
aggregation method. In our proposed method we are focusing real-time data fusion near
the data source. So data aggregation in the edge layer is a good location for smart
aggregation.

Khulna University Studies

3.4.4 Intelligent Processing

This layer mainly responsible to provide different intelligent processing services. There
are two type processing techniques one is the top-down (model-driven) and bottom-up
(data-driven) approaches [26]. Top-down approach work from top to bottom for example
it extract data directly from the sensors to recognize any patters and execute action if
there will be any. On the other hand the bottom-up approach work from the predictive
models at the edge. Based on previous data, this assures that edge analytics improve
over time.

3.4.5 Semantic Models

The semantic data model is a manner of organizing data such that it may be represented
logically. In our proposed model, this step is further divided into some sub steps as
described as follows:

e Sensors: Information is gathered through the use of different software, hardware,
and sensors. Establishing the link between raw data and the intended concept is
one of the most important challenges in the IoT. We do semi-automatic translations
between raw sensor data and relevant ontologies. Sensory data generally consists of
a time stamp identifying the moment of measurement, a device ID, and the values
observed by the sensor. The advantage of applying semantic technologies to sensor
data is that the raw data is conceptualized and abstractly represented, making it
machine interpretable and connectable to existing resources [11].

e Domain Knowledge: Without extra subject expertise, the vast bulk of real-time
data is incomprehensible. As a result, all accessible sources (for example, back-
ground knowledge about corporate operations, strategy, vision, and so on) should
be evaluated.

e Services: According to IR 4.0, the application layer should be designed in a manner
so that it can hide all the internal complexity and be able to display the activities to
the user in an easy way. We followed this methodology in our edge processing model
where semantic web services results are used to develop conceptual and semantic
representations for expressing services that will be implemented on the intelligent
edge. The semantic definition of services enables not only dynamically adding a
new service or replacing an existing one, but also building and validating processing
pipelines composed of many services. Protégé !, a well-known open-source ontology
building application, was used to generate the semantic models. Several parsers
have been created to "import” existing formal and semi-formal models into a single,
common, syntactically and semantically coherent model.

Figure 4 depicts the lifecycle of a dataflow task in the edge network. According to
the sequence diagram, all the communication will start by initiating a discovery message
to all the available nodes. Consider a special node called the coordinator node at first
send the offloading request to the respective node (Nodel, Node2 ... Node n). After
receiving each offloading request, the respective node will return an acknowledgment to
the coordinator node. After the discovery step, the next task is to select and configure

IProtégé, https://protege.stanford.edu/

Khulna University Studies

Coordinator ‘ ‘ Node 1 ‘ ‘NodeZ‘ ---

N
>

Offloading Req

<
Ack

Discovery

<
Ack

&
— <€

ISeIect
3

Configuration ~

A 4

Selection &
A

Configuration

Ready

Ready

A

-

o

(s}
©

A 4

>
Run o Run

A

Return Processing

Lifecycle
Management

&
<

I Reduce

Figure 4: Sequence diagram of job processing in the edge cluster.

Return 1
1
1

the appropriate node for the data transfer. According to the figure, the coordinator
can request a select message to another node and send the configuration message and
finally if the appropriate node is ready, a ready acknowledgment will be returned to the
coordinator. The final step is life cycle management and orchestration. At first run any
command to the node and the node return the result and this process iterates until the
full job done in the edge cluster.

4 Implementation and Result

This part describes the process of implementing our prototype, which illustrates the
method provided in Section 3. In order to justify our technique, we performed several
experiments. Our experiments focuses mainly on two aspects: (1) an evaluation of the
proposed framework’s performance with various targets using some off-line data sources;
and (2) test the method in a real-time situation.

4.1 Experimental Setup

As the primary data sources, the City Pulse [21] and City of Chicago [20] smart city data
sources were used. Although different IoT datasets are available now but we selected this
two data set because in our experiment we need csv formatted data as well as API hook
so that our process can call in realtime manner. Table 1 demonstrates the CityPlus and
City of Chicago data source details.

We also used the Amazon EC2 service (3.2 GHz Core i7, 16GB memory, Windows
Server OS). We ran our tests in two modes, one in offline mode and the other in real-time
mode. We created a specific component in our system to accept data from the dataset
and transmit it to our model in the offline mode. We utilized our test bed site for the
real case (details of our test bed may be found in our previous work [13]). The size of the
region is around 0.45km?. A map view of the deployment is shown in Figure 5. Distinct

Khulna University Studies

Table 1: CityPlus and and City of Chicago data source details.

Dataset ID Name Instances
D1 Traffic Data 1 7306
D2 Traffic Data 2 83721
D3 Traffic Data 3 14000
D4 Traffic Data 4 9397
D5 City Pollution Data 11569
D6 Weather Data 16369
D7 Parking Lot Data 1 55285
D8 Parking Lot Data 2 53267

pins on the map indicate different nodes in this map view. We put nodes to measure
light levels, ambient noise levels, ambient temperature, and traffic presence, particularly
automobile presence. We placed the sensor nodes in a manner so that the nodes could get
power all day and night. We attached a solar panel so that the node’s backup batteries
can charge during the night. We utilized smart phones as the edge processing nodes in
our experiment since they are simple to construct Al-based agent programs for and link
to the cloud server through a 4G network.

Figure 5: Web application interface prototype for real-time situation monitoring.

Table 2: List of job for the experiment.

Job ID | Name Action
HT Highest traffic area traf fic(D, MAX)
EP List of empty parking lot | empty_parking_lots(D)
SD List of sunny day area sunny_areas(D)
LP Lowest pollution cities pollution_areas(D, LOW EST)

4.2 Edge Processing Performance

In order to test the intelligent edge based processing performance, we split our system into
three approaches: i) without edge based processing; ii) with vertical offload based edge

Khulna University Studies

processing; iii) horizontal offload based edge processing. In the next step, we execute the
list of jobs that are listed in Table 2 on the data sets as listed in Table 1. Finally, Figure 6
depicts the comparison of execution times for cloud and edge-only processing. It should be
noted here that the experiment was performed both in a low and high bandwidth scenario.
The bandwidth were: average bandwidth of 1.4 MB/s (11.4 Mbits/s) with a standard
deviation of 15.3. The minimum bandwidth was Bj,, = 0.3M B/s (2.33 Mbits/s) and
the maximum bandwidth was Bj;g, = 11.6M B/s (92.8 Mbits/s). Edge-based processing
shows better results because less data must be transferred to the cloud server.

14000 1600
12000 1400
1200
10000
1000
8000
z g 8w
[=] Q
o 6000 o
2]
= = 600
E E
£ =
w 4000 w
E E aoo
= =
2000 200
] o]
HT EP SD LP HT EP SD LP HT EP SD LP HT EP SD LP HT EP SD LP HT EP SD LP
Cloud Edge (Vertical) Edge (Horizontal) Cloud Edge (Vertical) Edge (Horizontal)
M Processing Time M Transfer Time M Processing Time M Transfer Time
(a) With Low Bandwidth (0.3 MB/s) (b) With High Bandwidth (11.6 MB/s)

Figure 6: Comparison of execution times for cloud and edge-only processing.

In Figure 6 the horizontal axis indicates different jobs (as listed in Table 2). And the
vertical axis indicates the execution time in milliseconds. In Figure 6(a) the red color bar
indicates the data transfer time and the blue color bar indicates the data processing time
in the case of low bandwidth. Similarly, Figure 6(b) the red color bar indicates the data
transfer time and the blue color bar indicates the data processing time in the case of high
bandwidth. If we see the figures carefully, we see that in the case of low bandwidth in
our cloud only test, the data transfer is more than the data processing time. Although
for job SD (List of sunny day areas), the processing and transfer time are less than the
other three cases (HT, EP, and LP). This is because we have only one weather data set
(D6, which has 16369 instances) compared to traffic data sets, which have four data sets
(D1-D4). If we see sub figure (a) we can see that cloud-based processing time is more than
the other two methods. If we compare the performance based on offloading technique,
then horizontal offloading based edge processing takes less time, as in this case the edge
layer is using a cluster and only refined data is sent to the coordinator node (see Figure
4) to the cloud. As a result, both processing and transfer times are reduced. If we go to
the high bandwidth case, we see that transfer time is less as for bandwidth speed, the
data transfer saves time. In this experiment, it is clear that our edge-based processing is

Khulna University Studies

showing good performance in comparison to the traditional cloud-based processing.

4.3 Situation Detection Performance

To assess the performance of the situation detection approach, we monitored the environ-
ment for a few weeks and computed the number of events that happened vs the events
detected by our system. Our prototype was able to recognize 176 occurrences out of
about 181 distinct events such as high temperature, low humidity, and a scorching sunny
day. Due to connection delays and server load, our algorithm may provide deceptive
information at times.

5 Conclusion

The variety of Smart City applications and services has increased in recent years, ranging
from public services and safety to smart traffic and smart surveillance. As mobile and
cloud computing have advanced, a huge number of IoT devices have been connected to
the Internet, creating billions of bytes of data at the network edge. As a result of this
growth, there is an urgent need to extend Al’s frontiers to the network edge in order to
fully capitalize on the value of edge data. Edge computing, a new paradigm for shifting
computing workloads and services from the network core to the network edge, has been
suggested as a viable option to meet this requirement. In Smart Cities, the notion of
Edge Intelligence (EI) is gaining popularity. However, EI research is still in its infancy
and research groups would appreciate a dedicated venue for discussing recent advances
in EI in Smart Cities. To that aim, we presented a novel intelligent edge processing
system based on Situation Calculus for IoT-based Smart Cities. With our prototype, we
conducted a number of quantitative and qualitative studies. Our research indicates that
processing raw loT data at the edge devices reduces latency and gives decision makers
situational awareness. In the future, we hope to further examine the system in order
to assess its effectiveness in more realistic scenarios. We think that the suggested edge
computing architecture in an IoT-based smart city environment will steer IoT research
in a new direction.

References

[1] Nurul Hidayah Ab Rahman, Niken Dwi Wahyu Cahyani, and Kim-Kwang Raymond
Choo. Cloud incident handling and forensic-by-design: cloud storage as a case study.
Concurrency and Computation: Practice and Experience, 29(14), 2017.

[2] Ricardo S Alonso, Inés Sittén-Candanedo, Oscar Garcia, Javier Prieto, and Sara
Rodriguez-Gonzélez. An intelligent edge-iot platform for monitoring livestock and
crops in a dairy farming scenario. Ad Hoc Networks, 98:102047, 2020.

[3] Luigi Atzori, Antonio lera, and Giacomo Morabito. The internet of things: A survey.
Computer networks, 54(15):2787-2805, 2010.

[4] Mainak Bandyopadhyay, Maharana Pratap Singh, and Varun Singh. Formaliza-
tion and development of logic based emergency response systems using situation
calculus. In 2013 International Conference on Machine Intelligence and Research
Advancement, pages 504-508. IEEE, 2013.

Khulna University Studies

[5]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

Bita Banihashemi, Giuseppe De Giacomo, and Yves Lespérance. Abstraction in
situation calculus action theories. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Chii Chang, Satish Narayana Srirama, and Rajkumar Buyya. Indie fog: An efficient
fog-computing infrastructure for the internet of things. Computer, 50(9):92-98, 2017.

Pushpinder Kaur Chouhan, Liming Chen, Tazar Hussain, and Alfie Beard. A situ-
ation calculus based approach to cognitive modelling for responding to iot cyberat-
tacks. In 2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced
& Trusted Computing, Scalable Computing € Communications, Internet of People
and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI), pages
219-225. IEEE, 2021.

Dana Cuff, Mark Hansen, and Jerry Kang. Urban sensing: out of the woods. Com-
munications of the ACM, 51(3):24-33, 2008.

Yucong Duan, Zhihui Lu, Zhangbing Zhou, Xiaobing Sun, and Jie Wu. Data privacy
protection for edge computing of smart city in a dikw architecture. Engineering
Applications of Artificial Intelligence, 81:323-335, 2019.

Mica R Endsley. Design and evaluation for situation awareness enhancement. In
Proceedings of the Human Factors Society annual meeting, volume 32, pages 97-101.
SAGE Publications Sage CA: Los Angeles, CA, 1988.

Frieder Ganz, Payam Barnaghi, and Francois Carrez. Automated semantic knowl-
edge acquisition from sensor data. IEEE Systems Journal, 10(3):1214-1225, 2014.

Karim Habak, Mostafa Ammar, Khaled A Harras, and Ellen Zegura. Femto clouds:
Leveraging mobile devices to provide cloud service at the edge. In Cloud Computing
(CLOUD), 2015 IEEE 8th International Conference on, pages 9-16. IEEE, 2015.

SK Alamgir Hossain, Md Anisur Rahman, and M Anwar Hossain. Edge comput-
ing framework for enabling situation awareness in iot based smart city. Journal of
Parallel and Distributed Computing, 122:226-237, 2018.

Jingwei Huang, Mark S Fox, and Michael Gruninger. Distributed trust reasoning in
cyber-physical-social smart systems—a formalism in situation calculus.

Andres Laya, Vlad-loan Bratu, and Jan Markendahl. Who is investing in machine-
to-machine communications? In 24th Furopean Regional ITS Conference, Florence
2013, number 88475. International Telecommunications Society (ITS), 2013.

Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for the situation calculus.
1998.

Tom H Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi Wei, and Limin Sun. Fog
computing: Focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815,
2015.

Zhihan Lv, Dongliang Chen, Ranran Lou, and Qingjun Wang. Intelligent edge
computing based on machine learning for smart city. Future Generation Computer
Systems, 115:90-99, 2021.

Khulna University Studies

[19]

[20]

[21]

2]

[28]

Nils J Nilsson. Principles of artificial intelligence. Springer Science & Business
Media, 1982.

City of Chicago. City of chicago open data. Technical report,
https://data.cityofchicago.org/. Last accessed date: 26/05/2018.

Dan Puiu, Payam Barnaghi, Ralf Tonjes, Daniel Kiimper, Muhammad Intizar Ali,
Alessandra Mileo, Josiane Xavier Parreira, Marten Fischer, Sefki Kolozali, Nazli
Farajidavar, et al. Citypulse: Large scale data analytics framework for smart cities.
IEEE Access, 4:1086-1108, 2016.

Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Alexander Rashed, and
Schahram Dustdar. Towards a serverless platform for edge {Al}. In 2nd { USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 19), 2019.

Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile edge computing, fog
et al.: A survey and analysis of security threats and challenges. Future Generation
Computer Systems, 78:680-698, 2018.

Smartsantander. Future internet research and experimentation. Technical report,
http://www.smartsantander.eu/, 2016.

Munsif Yousef Sokiyna, Musbah J Aqel, and Omar A Nagshbandi. Cloud computing
technology algorithms capabilities in managing and processing big data in business
organizations: Mapreduce, hadoop, parallel programming. Journal of Information
Technology Management, pages 113-126, 2020.

Ljiljana Stojanovic, Marko Dinic, Nenad Stojanovic, and Aleksandar Stojadinovic.
Big-data-driven anomaly detection in industry (4.0): An approach and a case study.
In 2016 IEEE international conference on big data (big data), pages 1647-1652.
IEEE, 2016.

Brunno Vanelli, Madalena Pereira da Silva, Guilherme Manerichi, Alex San-
dro Roschildt Pinto, Mario Antonio Ribeiro Dantas, Mauri Ferrandin, and Adao
Boava. Internet of things data storage infrastructure in the cloud using nosql
databases. IEEE Latin America Transactions, 15(4):737-743, 2017.

Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele
Zorzi. Internet of things for smart cities. IEEE Internet of Things Journal, 1(1):22—
32, 2014.

