
A Secure Key Management Technique
Through Distributed Middleware

for the Internet of Things

Tamanna Tabassum(B), SK Alamgir Hossain, and Md. Anisur Rahman

Computer Science and Engineering Discipline, Khulna University,
Khulna, Bangladesh

tamannaku07@gmail.com, alamgir@cseku.ac.bd, anis@cseku.ac.bd

Abstract. Internet of Things has made dramatic change in our life.
Consumer, governmental and business trends are pushing us towards the
IoT. 1.9 billion devices are being used today, and more than 50 billion
will be used by 2020. So with the increase of internet connected devices,
there is an increasing need for strong security measures. The sensors are
manufactured by different companies with different processing power. In
this huge number of low power sensors how the data will be protected
from different attacks? As IoT data need to transit through different
gateways and cloud to reach its final destination so what will happen if
any attacker change the data or in any other way take the control and
destroy the whole system. Our main target is to ensure a protected and
secure IoT by introducing a secure key exchange mechanism, along with
a key replacement process. As from our initial experimentation, we found
out that the proposed approach of distributed key management technique
is appealing and performing good with respect to several factors like
robustness, delay, overhead, malicious attacks, etc.

Keywords: Internet of Things (IoT) · Encryption · Security protocol

1 Introduction

Internet of Things (IoT) is showing a significant role in this modern world of
technology that every smart device is trying to connect to the Internet. The
IoT connects almost all the facets of individual’s life like smart environment and
health-care to wearables. Different entities can communicate and interact to pro-
vide different services. This smart nature of things lead to many applications like
smart cities, logistics, smart agriculture, home automation, health care, military
surveillance, security, etc. [1–5].

IoT allows electronic devices in our surrounding environment to be active
participants by sharing information with other members of the network making
it possible to recognize events and changes in their surroundings and to act and
react autonomously without any human interaction [6]. The advantages of IoT

c© Springer Nature Switzerland AG 2019
K. Arai et al. (Eds.): SAI 2018, AISC 858, pp. 1128–1139, 2019.
https://doi.org/10.1007/978-3-030-01174-1_86

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01174-1_86&domain=pdf

A Secure Key Management Technique Through Distributed Middleware 1129

are almost limitless and its applications are changing the way we work and live by
saving time and resources, and opening new opportunities for growth, innovation,
and the exchange of knowledge between entities. However, the existence of such a
large network [7] of interconnected entities will show new problems like security,
privacy, and trust threats that all the connected devices are in a high risk.

Internet is the foundation of IoT hence almost all the security threats that
are within Internet propagate to IoT as well. Furthermore, the fast development
and wider adoption of IoT devices in our lives signifies the urgency of address-
ing these security threats before deployment. As the interconnected devices is
related to the users lives so there is a need for a well-defined security threat
classification and a proper security architecture that can resolve the security
problems regarding privacy, data integrity, and availability in IoT [8].

Among different key management approaches the simplest approach is to
pre-distribute the cryptographic keys to the sensor nodes. But there are several
limitation of this approach: (i) consider a scenario, a dedicated single key is being
shared among all the nodes and the problem is if a single device is attacked by
an attacker the full system may be compromised; (ii) another approach where
a dedicated key is used for each node is also useless as million of nodes in the
network and it is very difficult to scale up in that extend. To solve the above
problem Eschenauer et al. [9] proposed a random key generation and sharing
process. Their scheme is to select a random set of keys from a key table and
assign to each node. And they assign the keys in such a way that any two nodes
receive a shared key so that they can initiate the secure communication. The
problem of this method is if one key is compromised there is a chance to gain
access of the full system.

A classical XOR based key construction technique is presented by Pietro et al.
[10]. This method is popular as the technique is faster with respect to resource
use as well as for protecting from malicious attacks. As the IoT sensor nodes
have limited capacity a light weight key management protocol is recommended.
Abdmeziem et al. [11] introduced a similar technique in electronic health sce-
nario. According to their technique a separate process is responsible for execut-
ing the cryptographic primitives and certificate control. But in evaluation they
found that using a third party certificate provider impact the performance and
scalability. Being motivated by [11] the authors [12] and [13] introduced a group
key exchange mechanism for sensor nodes but still in reality most of the cases
the nodes are independent and is very difficult to group them in physically or
logically.

Our contribution in this paper is: at first we present a distributed key man-
agement technique and we provide an optimized key management algorithm that
will ensure security for IoT systems. The remaining of this paper is organized
as: In Sect. 2 we presented our proposed approach and provide a detail of the
proposed system. Further in Sect. 3, we describe the implementation issues, and
some evaluation strategies. Also, in Sect. 4, we present the result that we found
from our experiment. At the end we provide conclusion of the paper in Sect. 5
and state some possible future work directions.

1130 T. Tabassum et al.

2 Proposed Key Management Method

In this section we present our proposed key management technique and their
working process. A secure key exchange mechanism, with a key replacement
technique, is essentials for message transfer. In order to transfer the message
between sources a flexible middle-ware is necessary. In our research we considered
a Smart Middleware that consists of a collection of Smart Objects (SO) that have
the facility to store, register and process IoT node data. In a complete network
millions of SO can be functional and their main duty is to minimize the gap
between the data processing unit to the source nodes. If any source node wants
to exchange its data it may send registering or in an anonymous way. If it wants
to send data in a secure way the node must be registered with SO and SO
assigns the proper keys for encrypting any future transmitted information. The
encryption algorithm may vary one SO to another SO. As multiple source nodes
may continuously send data to the SO, data will be stored in raw data storage.
Later the SO processes the data from the storage and normalizes the data and
finally send data to the users/subscribers.

In our approach each message has mainly two parts: one is the data part and
other is the control part. Consider a scenario where a source node A wants to
send message m to a end node B (and there is a set of intermediate nodes N0,
N1,..., Nr). The control part (is important for message routing) of the message
is only read by the intermediate nodes and the data part is only read by the
end node. In order to establish a secure communication between the network
nodes, we proposed a secure encrypted key that is linked with every pair of
consecutive nodes. By using this we want to take advantage of the symmetric-
key encryption technique. So consider K0 is a cryptographic key that is shared
between the source node A and the next receiving node N0; according to our
technique the control part of the message is encrypted in the source node A and
decrypted in node N0 using the current shared key K0. The similar process (K1

will be shared between N0 and N1, K2 will be shared between N1 and N2 and
so on) will continue until the message reaches the end node B. The data part of
the message is encrypted by the source node A which is only decrypted by the
end node B.

2.1 Keys, Ki

In our method two sets of keys are used for each node: one is the global and
another one is the local keys. Each key is further divided into two parts: name
and the value part. The format of local key name is K = 〈Knode,Kincr〉, if the
network has up to 2d nodes then Knode is placed into the d most significant bits
of K and Kincr is placed into the d least significant bits of K. At the beginning
of the system operation the local key is assigned to 0 and after each action it is
incremented by 1. The format of global key name is the order number of that
key when the key is generated.

A Secure Key Management Technique Through Distributed Middleware 1131

2.2 Communication Channels, Ci

Two nodes are adjacent if they can send message to each other in any way either
a direct link or through some intermediate links. Two nodes (say A and B) are
called adjacent if they can distribute message through a direct link, in other
words if they can hold a same key K. The connection of this two adjacent node
is denoted by {A,B}K , which means A is directly connected with B sharing the
key K for any secure message transfer. In each node M , 3 tables will be used
for communication channels (Fig. 1):

Fig. 1. Tables used for communication channels.

• Connection table, CTM : This table contains a single entry for each node that
are connected to one another. The row CTMN is for node N and a list of
local keys K0, K1, etc. It should be noted here that as the connections are
bi-directional, CTM,N and CTN,M hold the same key.

• Global key table, GTM : This table contains one entry for each key K for
which Knode = M . The entry reserved for key K contains the incremental
name Kincr of this key and the value v of this key.

• Local key table, LTM : This table contains a single entry for each local key K
generated by another node (i.e. Knode �= M). LTM is required because if a
source node tries to send message to a destination where it is not registered
before. In this case the communication will be established through the help
of local key table. As source node do not generate local keys, they only store
2 local tables: the connection table, and the global key.

Now we would like to discuss the process and the different key table structure
of message m transfer from a source node A to destination node B through a
direct link. The process is demonstrated in Fig. 2.

(1) If CTAB exists in CTA and CTBA also exists in CTB this means the connec-
tion are bidirectional. If CTAB exists but CTBA does not exist then A can
send message to B demanding the appropriate global key. When B receives
message then it looks up for appropriate global key G and acknowledge
the global key to the source A. If no global key exists for A and B then
acknowledge an empty global key. In this case node A tries to send the mes-
sage in another route. If no paring is possible it means that the network is
disconnected.

1132 T. Tabassum et al.

Fig. 2. Process and the different key table structure of a message transfer from node
A to node B.

(2) Source A generates a new local key K = 〈Knode,Kincr〉 when it receives the
acknowledgement (global key) from B and also inserts an entry in global key
table GTA. Finally A calculates the value k = f(v) (f(v) is a key conversion
function of K) and send the pair 〈K, k〉 to node B.

(3) When A sends 〈K, k〉 to node B, it then stores it in its local table LTB and
reverses entry for CTB,A. The key setup will be closed by sending a positive
reply message from B to A. Finally the key setup is done and A can send
message to B encrypted by using K while B decrypts the message.

We discussed for a direct communication now we would like to present the
process when the message is sent via an intermediate node. The process is demon-
strated in Fig. 3.

Fig. 3. Message transferring via an intermediate node N .

A Secure Key Management Technique Through Distributed Middleware 1133

(1) In this case node A sends message m to end node B through an intermediate
node N . So A and N have CTAN and CTNA respectively for bidirectional
link between A and N . Similarly N and B have CTNB and CTBN , respec-
tively for bidirectional link between N and B.

(2) A uses connection {A,N}K for sending message to N as well as N uses
connection {N,B}K for sending message to B.

(3) Now if A wants to send message to B it first pairs with A and N with the
same process as we discussed in case of a direct link. When N receives the
message it then pair with B to send the message to B in the same manner.
Finally the secure communication channel {A,N,B}K is setup.

The technique can be extended to any sequence of nodes where r+3 number
of nodes (A,N0, N1, ..., Nr, B) are available. And finally we can say that a secure
communication is possible for the message being sent from node A to node B
through an arbitrary list of intermediate nodes N0, N1, ..., Nr.

2.3 Key Update

In many cases nodes need to update the local key with the new value. When the
local key needs to update a flooding/broadcasting, local key update message is
initiated by a node so that all the associated nodes can update their local key
table. The key update processes is as follows:

(1) In the first step A lookup CTA for all entry of K then send message change
command to all the link nodes with A that are sharing K. It should be
noted here that if no such key is found for the link, global key is used as we
discussed in the earlier section.

(2) Now say B receives change message from A. In order to ensure security B
verifies message m by using the f(v) which is the key conversion function of
K which it stored earlier in its LTB table. So it extracts v from the message
and match in LTB . If no match is found then it discards the request, if found
then updates its entry for the key K.

The above key generation and distribution technique is illustrated in the
following Algorithm 1.

3 Implementation

In this section we describe the implementation process of our prototype that
represents the technique we presented in Sect. 2.

3.1 Experimental Setup

In our prototype (Fig. 4), we have a layer of Smart Objects (SOs) that are
responsible for processing and controlling the messages. SOs are smart nodes that
have a computational capability and usually deployed in a distributed manner.

1134 T. Tabassum et al.

Algorithm 1. Key Generation and Distribution
/* if the algorithm fails, A is disconnected from the network. */

if {A, B}K exists in CTA then
φ(A, B, m, K);

else
G = findGlobalKey(A, B);
if G �= null then

A generates a new local key K = 〈A, Kincr〉;
φ(A, B, m, G);
sendAck(A, B);
updateCT (A, B);
A send message m to B, using K and can decrypt m from B with G;

else
A link with B via adjacent node N with link {A, N}K ;
φ(A, N, m, K);
if {N, B}K exists then

φ(N, B, m, K);
updateCT (A, B);
setConnection(A, N, B, K);

else
if {N, B}K′ exists, where K �= K′ then

φ(N, B, m, K′) with K=〈Knode, Kincr〉 received by A;
sendAck(B, N);
updateCT (N, A, B);
setConnection(A, N, B, K);

else
if {N, B}G exists then

φ(N, B, m, G) with K=〈Knode, Kincr〉 received by A;
sendAck(B, N);
updateCT (N, A, B);
setConnection(A, N, B, K);

else
No G exist that is using N, B;
N link with B via adjacent nodes;
while islink(B) or isAvailable(adjacent nodes) do

searchAdjacentNodes();

Algorithm 2. φ (A, B, m, K)
/* Node A sends message m to node B encrypt with key K and finally

B decrypts encrypted m with K */

me ← encrypt(m, K);
sendMessage(A, me, B)
m ← decrypt(B, me, K);

A Secure Key Management Technique Through Distributed Middleware 1135

It should be noted that the SOs have the capacity to connect with the nearby
IoT sensors or devices by using different communication channel like NFS, WiFi,
direct wire connection or through the Internet. In our prototype we used Apache
Cassandra [14] for storage management, and Mosquitto [15] for message broker
for MQTT [16] publish/subscribe mechanism. Our preference on Cassandra over
other NoSQL database like MongoDB its ability to scale while still being reliable,
is because it is possible to deploy Cassandra across multiple servers built-in
without a lot of extra work.

Fig. 4. Our implemented prototype.

In an IoT environment as resource consumption and power is a big issue so
all the implementation should be in such a manner that the resource-constrained
devices can work with maximum life time. We suggested in our approach the
MQTT [16] which is a pub/sub protocol and specially developed for resource
constrained environment like IoT. So whenever a data source wants to send
message it publish the message with a pool of pre selected topic. The sensors
or smart devices that want to receive the message they need to subscribe with
a published topic. In this simple model the full message communication can be
easily handled in the complex IoT environment. A sample topic is demonstrated
in Fig. 5. It is important for pub/sub model that sources may subscribe in a
topic at runtime and at any-time can un-subscribe as well.

1136 T. Tabassum et al.

Fig. 5. MQTT topic.

4 Result

To perform the feasibility study, and to understand the importance of the sys-
tem, the detailed analysis is performed on various cases. We setup our SO nodes
on several Raspberry Pi and simulate the outcome in a real environment. In our
setup we used 10 sensors (3 temperatures, 2 humidity, 4 motions, and 1 camera)
to sense the environment and all the data retrieve through HTTP GET and
REST api. To ensure SO based prototype system performs with the sensors and
the subscribers we run prototype setup over a week with appropriate perfor-
mance thread hook so that we can record the behaviour on time. The analysis
results are as follow:

4.1 Key Generation and Distribution Time

We are using Algorithm 1 for key generation and distribution. In order to
identify the processing time of this algorithm we setup our prototype with
5 sensors (3 temperature and 2 humidity) and before sending the data to
the SO we complete the registration of the sensors to the SO and each sen-
sor will send 1KB of message to SO. In this case we only consider direct
link between SO and the sources. During the registration step each sensor
assigned an unique identifier to recognize each sensor uniquely. We run the
process 10 times to get the averages processing time. The result is shown in
Fig. 6. From this test we identified that the algorithm will cost approximately
21 ms. From the figure we found that sometimes the delay is more because the
overall time depends on the current load of the SO as well as the network speed.
We perform the same test again but in this case we consider that a node want
to send data to another node via the SO by using our key management protocol
and we identified that the average delay time is 32 ms (approx.).

4.2 Service Response Analysis

We measured the sending time from the source node to the subscriber by using
the following (1). Where Key generation and access time is Z unit which we
identified in case of direct link is 21 ms and 32 ms in case of via SO, the message
size is n, the HTTP server delay with transmission time is Π and β for sending
time from SO to the MQTT client.

T = Z +
n

Π
+ β (1)

A Secure Key Management Technique Through Distributed Middleware 1137

Fig. 6. Key generation and distribution time.

So when a source generates a message, the system requires maximum T =
(32 + 270 + 244) ms (approx.). Here, 32 ms is the average of the key access time,
270 ms is the network overhead and β is 244 ms. The above response time is in
case of a single source, but practically multiple sensors can interact with each
other at the same time. The developed Smart Object(SO) supports transfer
requests from multiple nodes. For example, when a node sends message to the
SO it creates a queue of request on a First Come First Serve (FCFS) basis. In
such cases the Response Time can be calculated by using the Little’s Formula,
which is a classical conservation equation in queuing theory.

E(T) =
E(n)

λ
(2)

Here, E(T) is the average delay for a source node message request, i.e. average
throughput time, E(n) is the average number of requests to the SO. λ is the
arrival rate of the nodes requests. However,

E(n) =
ρ

1 − ρ
and ρ =

λ

μ
(3)

Where, ρ is the fraction of time the SO requires to process the requests.
Hence, combining (2) and (3) we get,

E(T) =
ρ

λ(1 − ρ)
=

λ
μ

λ(1 − λ
μ)

=
1

μ − λ
(4)

Here, μ is request processing rate from the queue, and (4) is the queuing
delay. In this equation λ is the arrival rate of a request by a node and μ is the
average service rate. In our experiment we measured that the average service time
is approximately 2.5 s. Hence, average service rate μ = 1

2.5 = 0.4 per second.

1138 T. Tabassum et al.

For example, in case after every 60 s a requests is triggered to the SO then
λ = 1

60 = 0.0167 request per second. Therefore, from the Little’s Formula (4),
the total waiting time including the service time = 1

0.4−0.0167 = 2.61 s (approx.).

4.3 Robustness in Case of Malicious Attacks

Two types of malicious attacks may be happen: attack performed by external
entities (those are not part of the network) and attack performed by the reg-
istered sources. Our protocol shows robustness in case of external attack. It is
difficult to derive easily the global key from a value of another global key. Still if
one global key is eavesdropped, the whole network will remain secure and only
a part of the network will be affected. To reduce the risk we used local keys
as a extra layer of security. The external attacker may eavesdrop the local key
name, but if wants to know the value of the key he has to know the encryption
algorithm. We did not consider the physical attack by which the attacker may
steal the global/local keys. When any source will be registered in the SO, the
node has full access to the local and global keys that is shared between them so
if the registered sources may attack the network it is hard to protect. We want
to focus this issue in the next extension of our research.

5 Conclusion

IoT is expanding rapidly and as IoT is using internet as a connection medium
so secure connection mechanism is very necessary. In this paper we presented
a secure key distribution system, along with a key replacement mechanism. In
our proposed system a distributed middleware layer, named Smart Object (SO),
able to manage heterogeneous data sources, to provide a uniform, consistent data
representation and to evaluate the security and quality level associated to each
data unit. In particular, a proper security algorithm has been developed in order
to assess the trustworthiness of registered and non registered IoT data sources.
The effectiveness of the proposed solution has been validated through the imple-
mentation of a real prototype. Through our experiment, we found out that the
proposed approach is appealing and performing well in terms of overhead, delay
and robustness towards malicious attacks. Here we only consider single smart
object and would like to consider our key management protocol in multiple SO
cases. However, we believe that our proof will remain as a motivation for further
research in this area.

References

1. Sicari, S., Rizzardi, A., Cappiello, C., Miorandi, D., Coen-Porisini, A.: Toward data
governance in the internet of things. In: New Advances in the Internet of Things,
pp. 59–74. Springer (2018)

2. Xu, Q., Aung, K.M.M., Zhu, Y., Yong, K.L.: A blockchain-based storage system
for data analytics in the internet of things. In: New Advances in the Internet of
Things, pp. 119–138. Springer (2018)

A Secure Key Management Technique Through Distributed Middleware 1139

3. Amin, R., Islam, S.H., Biswas, G., Khan, M.K., Leng, L., Kumar, N.: Design of an
anonymity-preserving three-factor authenticated key exchange protocol for wireless
sensor networks. Comput. Netw. 101, 42–62 (2016)

4. Barreto, L., Celesti, A., Villari, M., Fazio, M., Puliafito, A.: An authentication
model for iot clouds. In: Proceedings of the 2015 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining 2015, pp. 1032–1035.
ACM (2015)

5. Benabdessalem, R., Hamdi, M., Kim, T.-H.: A survey on security models, tech-
niques, and tools for the internet of things. In: 2014 7th International Conference
on Advanced Software Engineering and Its Applications (ASEA), pp. 44–48. IEEE
(2014)

6. Singh, D., Tripathi, G., Jara, A.J.: A survey of internet-of-things: future vision,
architecture, challenges and services. In: 2014 IEEE world forum on Internet of
things (WF-IoT), pp. 287–292. IEEE (2014)

7. Bradley, J., Barbier, J., Handler, D.: Embracing the internet of everything to cap-
ture your share of $14.4 trillion. White Paper, Cisco (2013)

8. Mattern, F., Floerkemeier, C.: From the internet of computers to the internet of
things. In: From Active Data Management to Event-based Systems and More, pp.
242–259. Springer (2010)

9. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security, pp. 41–47. ACM (2002)

10. Di Pietro, R., Mancini, L.V., Jajodia, S.: Providing secrecy in key management
protocols for large wireless sensors networks. Ad Hoc Netw. 1(4), 455–468 (2003)

11. Abdmeziem, M.R., Tandjaoui, D.: An end-to-end secure key management protocol
for e-health applications. Comput. Electric. Eng. 44, 184–197 (2015)

12. Veltri, L., Cirani, S., Busanelli, S., Ferrari, G.: A novel batch-based group key
management protocol applied to the internet of things. Ad Hoc Netw. 11(8), 2724–
2737 (2013)

13. Yu, H., He, J., Zhang, T., Xiao, P.: A group key distribution scheme for wireless
sensor networks in the internet of things scenario. Int. J. Distrib. Sens. Netw. 8(12),
813594 (2012)

14. Apache, Apache cassandra, Technical report. http://cassandra.apache.org
15. Eclipse, Mosquitto, Technical report. https://mosquitto.org
16. OASIS, Mqtt 3.1.1 specification, Technical report. http://docs.oasis-open.org/

mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

http://cassandra.apache.org
https://mosquitto.org
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

	A Secure Key Management Technique Through Distributed Middleware for the Internet of Things
	1 Introduction
	2 Proposed Key Management Method
	2.1 Keys, Ki
	2.2 Communication Channels, Ci
	2.3 Key Update

	3 Implementation
	3.1 Experimental Setup

	4 Result
	4.1 Key Generation and Distribution Time
	4.2 Service Response Analysis
	4.3 Robustness in Case of Malicious Attacks

	5 Conclusion
	References

